Long-range energy transfer and ionization in extended quantum systems driven by ultrashort spatially shaped laser pulses.

نویسندگان

  • Guennaddi K Paramonov
  • André D Bandrauk
  • Oliver Kühn
چکیده

The processes of ionization and energy transfer in a quantum system composed of two distant H atoms with an initial internuclear separation of 100 atomic units (5.29 nm) have been studied by the numerical solution of the time-dependent Schrödinger equation beyond the Born-Oppenheimer approximation. Thereby it has been assumed that only one of the two H atoms was excited by temporally and spatially shaped laser pulses at various laser carrier frequencies. The quantum dynamics of the extended H-H system, which was taken to be initially either in an unentangled or an entangled ground state, has been explored within a linear three-dimensional model, including the two z coordinates of the electrons and the internuclear distance R. An efficient energy transfer from the laser-excited H atom (atom A) to the other H atom (atom B) and the ionization of the latter have been found. It has been shown that the physical mechanisms of the energy transfer as well as of the ionization of atom B are the Coulomb attraction of the laser driven electron of atom A by the proton of atom B and a short-range Coulomb repulsion of the two electrons when their wave functions strongly overlap in the domain of atom B.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix-Assisted Laser Desorption/Ionization with ultrashort laser pulses

In our group, we perform successfully MALDI by using femtosecond laser techniques in order to examine the ionization process. One recent result is MALDI with ultrashort laser pulses in the near IR (central wavelength of =800 nm) [2]. In this wavelength regime, used matrix substances have no absorption bands. Experiments with different laser pulse durations suggest that multi photon ionization i...

متن کامل

Influence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation

Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...

متن کامل

Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials

A comparative study of the effect of ultrashort (0.5 ps) and short (15 ns) pulses on the laser forward transfer of DNA molecules is presented in this paper. We use femtosecond laser pulses to directly print a wide range of biomaterials, in complicated patterns and structures. The ultrashort laser pulses reduce the thermal effects, thus allowing the effective deposition of sensitive biomaterials...

متن کامل

Study of laser ablation using nano-second laser pulses

 In this paper, the laser ablation process based on the irradiation of nanosecond pulsed lasers on a copper target surface in the presence of Helium gas is studied. The dynamical behaviors of the generated plasma in the helium gas and evaporated copper at the atmospheric pressure are examined using a laser pulse, laser wavelength of and intensity of 7×1010W/cm2. A one-dimensional thermal model ...

متن کامل

Quantum state transfer between motion and light

We describe schemes for transferring quantum states between light fields and the motion of a trapped atom. Coupling between the motion and the light is achieved via Raman transitions driven by a laser field and the quantized field of a high-finesse microscopic cavity mode. By cascading two such systems and tailoring laser field pulses, we show that it is possible to transfer an arbitrary motion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 13 19  شماره 

صفحات  -

تاریخ انتشار 2011